
https://www.ees.tf.fau.de/ georg.kordowich@fau.dePoster 1

An Accessible PyTorch Implementation of Automatic

Differentiation for Power System Model

Parameter Identification and Optimization
1st Georg Kordowich, 2nd Johann Jaeger

Friedrich-Alexander-Universität Erlangen-Nürnberg – Germany

Automatic Differentiation

Computation of Gradients

• Conventional computation:
𝜕𝑓 𝑥

𝜕𝑥
≈

𝑓 𝑥+ℎ − 𝑓 𝑥

ℎ

• Automatic differentiation (AD) applies chain rule

of differentiation:
𝜕𝐿

𝜕𝑝
=

𝜕𝐿

𝜕𝑜1

𝜕𝑜1

𝜕𝑜2

𝜕𝑜2

𝜕𝑜3
…

𝜕𝑜𝑛−1

𝜕𝑜𝑛

𝜕𝑜𝑛

𝜕𝑝

AD for Power Systems

Exemplary Applications

Parameter OptimizationParameter Identification

Conclusions

Advantages

+ Scalable gradient calculation

+ Accessible implementation

+ Inherently vectorized approach

+ Full control over simulation

+ Simple integration of ANNs

Disadvantages

˗ Gradient descent can get

stuck in local optima

˗ Python is inherently slower

than more low level

languages

Dynamic RMS Simulations

Phasor Based Simulation

• Power system can be described by a

set of differential algebraic equations:

ሶ𝒙 = 𝑓(𝒙, 𝒚)
0 = 𝑔(𝒙, 𝒚)

• Simulation consists of locally

differentiable operation (+,−, ∗, /,
𝑙𝑛 𝑥 , 𝑒𝑥 , . . .)

Automatic differentiation is applicable

to power system simulations

A framework enabling automatic

differentiation is necessary for the

accesibility of the approach

Simulate for t timesteps

Calculate Algebraic

Equations 𝑦𝑡 = h(𝑥𝑡)

Calculate Differential

Equations

ሶ𝑥𝑡 = f(𝑥𝑡, 𝑦𝑡)

Integration of State

Variables

𝑥𝑡+1 = 𝑥𝑡 + ሶ𝑥𝑡 ⋅ Δ𝑡

Gradient Descent based Optimization Process

Which simulation parameters describe

a real-world system best?

Which controller parameters lead to a

sufficiently damped system?

A PyTorch Based Framework for Automatic Differentiation

• Determines the gradient
𝜕𝐿

𝜕𝜃
of parameters 𝜃 with respect to a

loss function L.

• Dynamic power system

simulation is implemented

in Python using PyTorch

as an AD tool

• Flexible and modular

• Calculation of gradients in

one line of code

• Optimization using pre-

defined PyTorch

optimizers is possible

