

Friedrich-Alexander-Universität Technische Fakultät

An Accessible PyTorch Implementation of Automatic **Differentiation for Power System Model Parameter Identification and Optimization** 1st Georg Kordowich, 2nd Johann Jaeger

Friedrich-Alexander-Universität Erlangen-Nürnberg – Germany

Automatic Differentiation

Computation of Gradients

- Conventional computation: $\frac{\partial f(x)}{\partial x} \approx \frac{f(x+h) f(x)}{h}$
- Automatic differentiation (AD) applies chain rule of differentiation: $\frac{\partial L}{\partial p} = \frac{\partial L}{\partial o_1} \frac{\partial o_1}{\partial o_2} \frac{\partial o_2}{\partial o_3} \dots \frac{\partial o_{n-1}}{\partial o_n} \frac{\partial o_n}{\partial p}$

AD for Power Systems

Gradient Descent based Optimization Process

Dynamic RMS Simulations

Phasor Based Simulation

- Power system can be described by a set of differential algebraic equations: $\dot{\mathbf{x}} = f(\mathbf{x}, \mathbf{y})$
 - $0 = q(\mathbf{x}, \mathbf{y})$
- Simulation consists of locally differentiable operation (+, -, *, /, $ln(x), e^{x}, ...)$
- \rightarrow Automatic differentiation is applicable to power system simulations
- \rightarrow A framework enabling automatic differentiation is necessary for the accesibility of the approach

A PyTorch Based Framework for Automatic Differentiation

• Determines the gradient $\frac{\partial L}{\partial \theta}$ of parameters θ with respect to a loss function L.

- Dynamic power system simulation is implemented in Python using PyTorch as an AD tool
- Flexible and modular
- Calculation of gradients in one line of code
- Optimization using predefined PyTorch optimizers is possible
- # addition of a bus to the model sim.add_bus(Bus(name='Bus 0', v_n=24)) # addition of a short circuit event sim.add_sc_event(start_time=1,
 - end_time=1.05, bus='Bus 1')

one optimization step t, result = sim.run() # Simulation loss = loss_function(result, target) # Loss calculation loss.backward() # Gradient computation optimizer.step() # Gradient descent

https://www.ees.tf.fau.de/

georg.kordowich@fau.de