Enhanced method to specify location and size of reactive power sources (RPS) in electrical transmission

Bader Sager and Hendrik Vennegeerts

Challenges:

- More RES, P=f(weather, time, place)
- Volatile power flows, highly loaded networks
- \rightarrow Increasing need for stationary and controllable RPS
- \rightarrow Many NUC (network use cases) to be considered
- \rightarrow Many critical contingencies
- Starting point power-flow often non-converging due to lack of RPS
- Complex optimization task
 - Min(cost)
 - Technical constraints including voltage stability

Solution:

- Use of QV-node inside optimization
 - \rightarrow Converging power flows
 - → Fast determination of distance to voltage stability limit

Optimization:

- Fixed and variable cost of additional RPS
- RPS location, size and type in each region
- Consider the network technical limits
- Remaining margin to voltage collapse point
- Flexible consideration of multiple NUC and contingencies

Conclusions:

- Best location, size & type of extra RPS possible:
 - Without interim placement of fiction sources
 - Converged AC power flow with distance to collapse point
 - Multiple NUCs and contingencies
- Robust results even at application of heuristic optimization methods

